
6 Digital Modulation

6.1 Introduction to Digital Modulation

6.1. We once again return to Figure 1 which is repeated here as Figure 20.
In this chapter, digital modulator-demodulator boxes are the main focus.
The digital modulator serves as the interface to the physical (analog)
communication channel.Elements of digital commu. sys.
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Figure 20: Basic elements of a digital communication system

The mapping between the digital sequence (which we may assume to be
a binary sequence) and the (continuous-time) signal sequence to be trans-
mitted over the channel can be either memoryless or with memory, resulting
in memoryless modulation schemes and modulation schemes with memory.

Definition 6.2. In a memoryless modulation scheme, each particular
digital modulation has a signal set which is simply a collection of M signals
(or waveforms): {s1(t), s2(t), . . . , sM(t)}. The binary sequence (from the
channel encoder) is parsed into blocks each of length b, and each block is
mapped into one of the signals in the signal set regardless of the previously
transmitted signals.

• M = 2b.

• This mapping from M possible messages to M (distinct) signals is
called M-ary modulation.
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Figure 21: Digital Modulator and the mapping from binary blocks to waveforms.

• 2-ary = binary; 3-ary = ternary; 4-ary = quarternary.

• In binary modulation, each bit from the channel encoder is trans-
mitted separately. The digital modulator simply map the binary digit
0 into a waveform s1(t) and the binary digit 1 into a waveform s2(t).

• The waveforms sm(t) can be, in general, of any shape. However, usually
these waveforms are bandpass signals which may differ in amplitude or
phase or frequency, or some combination of two or more signal param-
eters.

Definition 6.3. In a modulation scheme with memory, the mapping is from the set of the current
b bits and the past (L− 1)b bits to the set of possible M = 2b messages.

• Modulation systems with memory are effectively represented by Markov chains.

• The transmitted signal depends on the current b bits as well as the most recent L−1 blocks
of b bits.

• This defines a finite-state machine with 2(L−l)b states.

• The mapping that defines the modulation scheme can be viewed as a mapping from the
current state and the current input of the modulator to the set of output signals resulting
in a new state of the modulator.

• Parameter L is called the constraint length of modulation.

• The case of L = 1 corresponds to a memoryless modulation scheme.
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Definition 6.4. We assume that these signals are transmitted at every Ts
seconds.

• Ts is called the signaling interval.

• This means that in each second

Rs =
1

Ts

symbols are transmitted.
Parameter Rs is called the signaling rate, symbol (transmission)
rate, or baud rate.

• Bit rate R =

Definition 6.5. The energy content of a signal sm(t) is denoted by Em. It
can be calculated from

Em =

∫ ∞
−∞
|sm(t)|2dt.

6.6. The average signal energy (per symbol) for the M -ary modulation
in Definition 6.2 is given by

Es =
M∑
m=1

pmEm

where pm indicates the probability of the mth signal (message probability).

• (Average) energy per bit: Eb =

• For equiprobable signals,

• If all signals have the same energy, then

◦ Em ≡ E for some E and

◦ Es = E.
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Definition 6.7. In (the digital version of) Pulse Amplitude Modulation
(PAM), the signal waveforms are of the form

sm(t) = Amp(t), 1 ≤ m ≤M (35)

where p(t) is a (common) pulse and A = {Am, 1 ≤ m ≤M} denotes the set
of M possible “amplitudes”.

• For M = 2, we may have A = {±1}
For M = 4, we may have A = {±1,±3}
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• When M = 2 (binary modulation) and s1(t) = −s2(t), such signals
are called antipodal. This case is sometimes called binary antipodal
signaling.

• More generally, the signal “amplitudes” Am may take the discrete val-
ues

Am = 2m− 1−M, m = 1, 2, . . . ,M (36)

i.e., the “amplitudes” are ±1,±3,±5, . . . ,±(M − 1).

• These M waveforms can be visualized as M points on an axis as shown
below. Note how the axis is scaled by the common pulse p(t).

1
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 p t  
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• The shape of p(t) influences the spectrum of the transmitted signal.

• The energy in signal sm(t) is given by

• For equiprobable signals,

When A = {±1},

When A = {±1,±3},

For the general A defined in (36),

Definition 6.8. In Amplitude-Shift Keying (ASK), the (common) pulse
p(t) in (35) for PAM is replaced by

p(t) = g(t) cos(2πfct).

where fc is the carrier frequency.

• Note that Ep =
Eg
2 .

6.9. The mapping or assignment of b (encoded) bits to the M = 2b possible
signals may be done in a number of ways. The preferred assignment is one
in which the adjacent signal amplitudes differ by one binary digit. This
mapping is called Gray coding.

• It is important in the demodulation of the signal because the most likely
errors caused by (additive white gaussian) noise involve the erroneous
selection of an adjacent amplitude to the transmitted signal amplitude.
In such a case, only a single bit error occurs in the b-bit sequence.

• Gray code list for n bits can be generated recursively from the list for
n− 1 bits by
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i reflecting the list (i.e. listing the entries in reverse order),

ii concatenating the original list with the reversed list,

iii prefixing the entries in the original list with a binary 0, and then
prefixing the entries in the reflected list with a binary 1.
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Figure 22: Gray coding and its reflect-and-prefix construction for PAM signaling

6.10. In PAM (and ASK), we use just one pulse (sinusoidal pulse in the case
of ASK) and modify the amplitude of the pulse to create many waveforms
s1(t), s2(t), . . . sM(t) that we can use to transmit different block of bits. Next,
we would like to study the case where multiple shapes are used.

Example 6.11. For (baseband) binary (digital) modulation, we may use
the two waveforms s1(t) and s2(t) shown in Figure 23.
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Graphically, the orthonormal basis functions φ1(t) and φ2(t) look as in Figure 5.5(b) and
the signal space is plotted in Figure 5.6. The distance between the two signals can be easily
computed as follows:

d21 =
√

E + E = √2E = √2
√

E. (5.35)

�

In comparing Examples 5.1 and 5.2 we observe that the energy per bit at the transmitter
or sending end is the same in each example. The signals in Example 5.2, however, are closer
together and therefore at the receiving end, in the presence of noise, we would expect more
difficulty in distinguishing which signal was sent. We shall see presently that this is the
case and quantitatively express this increased difficulty.

Example 5.3 This is a generalization of Examples 5.1 and 5.2. It is included princi-
pally to illustrate the geometrical representation of two signals. The signal set is shown

Figure 23: Signal set for
Example 6.11.
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6.12. It is difficult to visualize, find relationship between, work with, or
perform analysis directly on waveforms. For example, when we have many
waveforms in the signal set, it is difficult to tell (by looking at their plots)
how easy it is for them to get corrupted by the noise process; that is, how
easy it is for one waveform to be interpreted as being another waveform at
the demodulator.

In the next sections, we will study how to represent waveforms in the
signal set as “equivalent” vectors (or points) in a signal space similar to
what we saw in Figure 22. Representing waveforms as points allows us to
look at them as a collection effectively.

Example 6.13. Consider a signal set containing four waveforms in Fig-
ure 24a. Note that a waveform contains infinitely many points. To repre-
sent all possible waveforms, we would need to work in infinite-dimensional
space. However, we only have to consider four possible waveforms here. It
turns out that we can represent these four waveforms by four vectors in a
three-dimensional space as shown in Figure 24b. It is possible to find such
representation systematically via a process called Gram-Schmidt Orthogo-
nalization Procedure (GSOP).
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Figure 24: From Waveforms to Constellation

6.14. A signal space is a vector space. So, we will first provide a review of
some concepts related to vector spaces.
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6.2 Vector Space and Inner Product Space in Rn

In linear algebra, an inner product space is a vector space19 with an addi-
tional structure called an inner product.

Definition 6.15. When we have a list of vectors, we use superscripts
in parentheses as indices of vectors. Subscripts represent element indices
inside individual vectors.

Example 6.16. Here is a list of four vectors:

v(1) =

1
1
0

 ,v(2) =

 1
−1
0

 ,v(3) =

 1
1
−1

 , and v(4) =

−1
−1
−1

 .

For the second vector, we have v
(2)
1 = 1, v

(2)
2 = −1, and v

(2)
3 = 0.

Definition 6.17. The inner product of two real-valued n-dimensional
(column) vectors u and v is defined as

〈u,v〉 = vTu =
n∑
k=1

ukvk.

In elementary linear algebra class, you may encounter this quantity in the
form of the dot product between two vectors.

Definition 6.18. Two vectors u and v are orthogonal if 〈u,v〉 = 0.
More generally, a set of N vectors v(k), 1 ≤ k ≤ N , are orthogonal if〈

v(i),v(j)
〉

= 0 for all 1 ≤ i, j ≤ N , and i 6= j.

Definition 6.19. The norm of a vector v is denoted by ‖v‖ and is defined
as

‖v‖ =
√
〈v,v〉

which in the n-dimensional Euclidean space is simply the length of the
vector.

Definition 6.20. A collection of vectors is said to be orthonormal if the
vectors are orthogonal and each vector has a unit norm.

19Recall that a vector space is a mathematical structure formed by a collection of elements called vectors,
which may be added together and multiplied (“scaled”) by numbers, called scalars in this context.
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Example 6.21. Let v =

(
5
5

)
and u =

(
0
4

)
.

(a) 〈v,u〉 =

(b) 〈v,v〉 =

(c) 〈u,u〉 =

(d) ‖v‖ =

(e) ‖u‖ =

Definition 6.22. A unit vector, usually denoted by e, is a vector whose
‖e‖ = 1.

6.23. Any vector in a vector space may also be represented as a linear com-
bination of orthogonal unit vectors or an orthonormal basis

{
e(i), 1 ≤ i ≤ N

}
(for that vector space), i.e.,

v =
N∑
i=1

cie
(i)

where
ci =

〈
v, e(i)

〉
.

Example 6.24. In many applications, the standard choice for the orthonor-
mal basis of a collection of (all possible real-valued) n-dimensional vectors
is

e(1) =


1
0
0
...
0

 , e(2) =


0
1
0
...
0

 , . . . , e(n) =


0
0
0
...
1

 .

In Example 6.21, all vectors are expressed via the standard basis{(
1
0

)
,

(
0
1

)}
.

6.25. Suppose we start with a collection of M n-dimensional vectors. Do
these M vectors really need to be represented in n dimensions?
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Example 6.26. Figure 25a shows a particular collection of 10 vectors in 3-
D. When viewed from appropriate angle (as in Figure 25b), we can see that
they all reside on a 2-D plane. We only need a two-vector (orthonormal)
basis. All ten vectors can be represented as linear combinations of these two
vectors.
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Figure 25: Ten vectors on a plane

Example 6.27. Consider the four vectors below:

v(1) =

−2
−6
2

 ,v(2) =

−1
−3
1

 ,v(3) =

 1
3
−1

 , and v(4) =

 2
6
−2

 .

They are all multiples of one another.

6.28. Similar idea applies to waveforms. In PAM, we have M waveforms
that are simply multiples of a pulse p(t). Therefore, one may represent them
as points in one dimension as we had discussed in the previous section.

1

AmA1 A2

 p t  A3

 1s t  2s t  3s t  Ms t
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6.29. Given a collection of M vecctors v(1), v(2), . . . , v(M), we can use
a technique called the Gram-Schmidt Orthogonalization Procedure
(GSOP) to find a collection20 of N orthonormal vectors e(1), e(2), . . . , e(N)

such that any v(j) can be expressed as a linear combination:

v(j) =
N∑
i=1

ci,je
(i),

where the constants (weights) ci,j =
〈
v(j), e(i)

〉
. We can then think of the

vector c(j) = (c1,j, c2,j, . . . , cN,j)
T as the new coordinates of v(j) based on the

new “axes” e(1), e(2), . . . , e(N).

Example 6.30. Consider a collection of two vectors:

v(1) =

(
5
5

)
and v(2) =

(
0
4

)
.

• In their original (default) coordinate systems, the basis contains two

vectors
(

1
0

)
and

(
0
1

)
.

• Alternatively, consider two orthonormal vectors

e(1) =
1√
2

(
1
1

)
and e(2) =

1

2
√

2

(
−2
2

)
.

55

5

5

𝐞𝐞

20In linear algebra, this collection is an orthonormal basis for the vector space spanned by v(1), v(2),
. . . , v(M).
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Using e(1) and e(2) as the new axes, we can express v(1) and v(2) in the
new coordinate system as

c(1) =

(
5
√

2
0

)
and c(2) =

(
2
√

2

2
√

2

)
.

55

𝐞(1)-axis

𝐞(2)-axis

റ𝐜(1) = 5 2
0

റ𝐜(2) =
2 2

2 2

5 2

2 2 2 2

Changing basis / coordinate systems

New Coordinates: റ𝐜(1) = 5 2
0

and റ𝐜(2) =
2 2

2 2

6.31. Important properties: the transformation from v(1), v(2), . . . , v(M)

to c(1), c(2), . . . , c(M) preserve many geometric quantities.

(a) Parseval’s Identity: Same inner product.

(b) Same norm.

(c) Same distance.
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6.3 Signal Space Concepts

As in the case of vectors, we now discuss a parallel treatment for a set of
signals (waveforms).

Definition 6.32.

(a) The inner product of two real-valued signals x1(t) and x2(t) is denoted
by 〈x1(t), x2(t)〉 and defined by

〈x1(t), x2(t)〉 =

∫ ∞
−∞

x1(t)x2(t)dt.

(b) The signals are orthogonal if their inner product is zero.

(c) The norm of a signal is defined as

‖x(t)‖ =
√
〈x(t), x(t)〉 =

√
Ex

where Ex is the energy in x(t):

〈x (t) , x (t)〉 = =

∞∫
−∞

|x (t)|2dt ≡ Ex

(d) A collection of N signals is orthonormal if the signals are orthogonal
and their norms are all unity.

Example 6.33. Consider the two waveforms shown in Figure 26.
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Figure 26: Two Waveforms in Example 6.33
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6.34. For a signal, note that if its norm is unity, then its energy is also
unity as well. We will use φ(t) to denote a unit-energy signal.

6.35. Similar to 6.29, given a collection of M signals s1(t), s2(t), . . . , sM(t),
we can (use a technique called GSOP) to find a collection of N orthonormal
signals φ1(t), φ2(t), . . . , φM(t) such that any signal sj(t) can be expressed
as a linear combination:

sj(t) =
N∑
i=1

s
(j)
i φi(t) (37)

where the constants (weights)

s
(j)
i = 〈sj(t), φi(t)〉 . (38)

Each signal can then be represented by a vector (or sequence)

s(j) = (s
(j)
1 , s

(j)
2 , . . . , s

(j)
N )T , (39)

or, equivalently, as a point in the N -dimensional (in general, complex) signal
space.

The (mathematical/conceptual) conversion/mapping from waveform to
it corresponding vector in (39) and (38) is shown in Figure 27a. The inverse
mapping from vector to waveform in (37) is shown in Figure 27b.

1

×

×

×

×

×

×

+

(a) (b)

Figure 27: Waveform to vector (a), and vector to waveform (b) mappings.
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Example 6.36. Consider the four waveforms illustrated in Figure 28.
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Figure 28: Four signals for orthogonalization in Example 6.36

Consider the following orthogonal functions

(a) φ1 (t) = s1(t)√
Es1

=

(b) φ2 (t) = s2(t)√
Es2

=

(c) φ3 (t) = s3(t)− s1(t)

Then,
s1(t) = φ1(t) + φ2(t) + φ3(t) ⇒ s(1) =

s2(t) = φ1(t) + φ2(t) + φ3(t) ⇒ s(2) =

s3(t) = φ1(t) + φ2(t) + φ3(t) ⇒ s(3) =

s4(t) = φ1(t) + φ2(t) + φ3(t) ⇒ s(4) =
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Definition 6.37. From 6.35, a set of M signals {sj(t), j = 1, 2, . . . ,M} can
be represented by a set of M vectors

{
s(j)
}

in the N -dimensional space. The
corresponding set of vectors is called the signal space representation, or
constellation, of {sj(t), j = 1, 2, . . . ,M}.

6.38. From the orthonormality of the basis, we have

(a) the inner product of two signals is equal to the inner product of the
corresponding vectors:

〈si(t), sj(t)〉 =
〈
s(i), s(j)

〉
.

(b) Ej ≡ Es(j) = ‖sj(t)‖2 =
∥∥s(j)

∥∥2
.

So, we can find the energy of any waveform represented in the constel-
lation from its corresponding vector simply by the sum of its squared
elements

6.39. The vector representation of the signals {sj(t)} will depend on the
orthonormal functions {φi(t)}, which are not unique. Nevertheless, the
dimensionality of the signal space (N) will not change, and the vectors s(j)

will retain their geometric configuration; i.e., their lengths and their inner
products will be invariant to the choice of the orthonormal functions {φi(t)}.
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6.4 Constellations for Digital Modulation Schemes

6.4.1 PAM

Definition 6.40. Recall, from 6.7, that PAM signal waveforms are rep-
resented as

sm(t) = Amp(t), 1 ≤ m ≤M

where p(t) is a pulse and Am ∈ A.

6.41. Clearly, PAM signals are one-dimensional since all are multiples of
the same basic signals. We define

φ(t) =
p(t)√
Ep

as the basis for the PAM signals above. In which case,

sm(t) = Am

√
Epφ(t), 1 ≤ m ≤M

and the corresponding one-dimensional vector representation is

s(m) = Am

√
Ep.

The corresponding signal space diagrams for M = 2, M = 4, and M = 8
are shown in Figure 29.100 Digital Communications 

FIGURE 3.2-1 
0 1 
• • • Constellation for PAM signaling . 
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signal amplitudes differ by one binary digit as illustrated in Figure 3 .2-1. This mapping 
is called Gray coding. It is important in the demodulation of the signal because the most 
likely errors caused by noise involve the erroneous selection of an adjacent amplitude 
to the transmitted signal amplitude. In such a case, only a single bit error occurs in the 
k-bit sequence. 

We note that the Euclidean distance between any pair of signal points is 

(3.2-18) 

(3.2-19) 

(3.2-20) 

where the last relation corresponds to a bandpass PAM. For adjacent signal points 
I Am - An I = 2, and hence the minimum distance of the constellation is given by 

(3.2-21) 

We can express the minimum distance of an M-ary PAM system in terms of its ebavg 

by solving Equations 3.2-6 and 3.2-12 for [ P and eg, respectively, and substituting the 
result in Equation 3.2-21. The resulting expression is 

drmn = 
12log2 M & 
M2- 1 bavg (3.2-22) 

The carrier-modulated PAM signal represented by Equation 3.2-8 is a double
sideband (DSB) signal and requires twice the channel bandwidth of the equivalent 
lowpass signal for transmission. Alternatively, we may use single-sideband (SSB) PAM, 
which has the representation (lower or upper sideband) 

Sm(t) = Re [Am (g(t) ± jg(t))ejZxfct], m = 1,2, ... ,M (3.2-23) 

Figure 29: Constellation for PAM signaling

6.42. In Amplitude-Shift Keying (ASK), p(t) = g(t) cos(2πfct) where
fc is the carrier frequency.

92



6.4.2 Phase-Shift Keying (PSK)

Definition 6.43. In digital phase modulation, the M signal waveforms
are represented as

sm(t) = g(t) cos

(
2πfct+

2π

M
(m− 1)

)
, m = 1, 2, . . . ,M (40)

where

• g(t) is the signal pulse shape and

• θm = 2π
M (m−1), m = 1, 2, . . . ,M is the M possible phases of the carrier

that convey the transmitted information.

Digital phase modulation is usually called phase-shift keying (PSK).

6.44. The PSK signal waveforms defined in (40) have equal energy:

6.45. Note that

(a) From the cos identity

cos(α± β) = cosα cos β ∓ sinα sin β,

we have

sm(t) = g(t) cos (θm) cos (2πfct)− g(t) sin (θm) sin (2πfct) .

(b) g(t) cos (2πfct) and −g(t) sin (2πfct) are orthogonal.
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Suppose we define

φ1 (t) =

√
2

Eg
g(t) cos (2πfct) , (41)

φ2 (t) = −

√
2

Eg
g(t) sin (2πfct) . (42)

In which case,

sm(t) =

√
Eg

2
cos (θm)φ1 (t) +

√
Eg

2
sin (θm)φ2 (t) .

Therefore the signal space dimensionality is N = 2 and the resulting vector
representations are

s(m) =

(√
Eg

2
cos (θm) ,

√
Eg

2
sin (θm)

)T

.

6.46. Signal space diagrams for BPSK (binary PSK, M = 2), QPSK (qua-
ternary PSK, M = 4), and 8-PSK are shown in Figure 30.Chapter Three: Digital Modulation Schemes 

FIGURE 3.2-3 
Signal space diagrams for BPSK, QPSK, 
and 8-PSK. 
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and the minimum distance corresponding to lm- nl = 1 is 

dmin = J eg ( 1 - cos ~) = J 2eg sin2 ~ (3.2-32) 

Solving Equation 3.2-26 for eg and substituting the result in Equation 3.2-32 result in 

(3.2-33) 

For large values of M, we have sin "fi :::::: -¥1, and dmin can be approximated by 

(3.2-34) 

A variant of four-phase PSK (QPSK), called ~-QPSK, is obtained by introducing 
an additionalJT /4 phase shift in the carrier phase in each symbol interval. This phase 
shift facilitates symbol synchronization. 

3.2-3 Quadrature Amplitude Modulation 

The bandwidth efficiency ofPAMjSSB can also be obtained by simultaneously impress
ing two separate k-bit symbols from the information sequence on two quadrature carriers 
cos 2JT Jet and sin 2JT Jet. The resulting modulation technique is called quadrature PAM 

103 

Figure 30: Signal space diagrams for BPSK, QPSK, and 8-PSK.

Note that BPSK corresponds to one-dimensional signals, which are iden-
tical to binary PAM signals.
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6.4.3 Quadrature Amplitude Modulation (QAM)

Definition 6.47. In Quadrature Amplitude Modulation (QAM), two
separate b-bit symbols from the information sequence on two quadrature
carriers cos (2πfct) and sin (2πfct) are transmitted simultaneously. The cor-
responding signal waveforms may be expressed as

sm (t) = A(I)
m g (t) cos (2πfct)−A(Q)

m g (t) sin (2πfct) , m = 1, 2, . . . ,M (43)

where

• A(I)
m and A

(Q)
m are the information-bearing signal amplitudes of the

quadrature carriers and

• g(t) is the signal pulse.

Equivalently,

sm (t) = Re
{(
A(I)
m + jA(Q)

m

)
g (t) ej2πfct

}
(44)

= Re
{
rme

jθmg (t) ej2πfct
}

(45)

= rmg(t) cos (2πfct+ θm) (46)

where

• rm =

√(
A

(I)
m

)2

+
(
A

(Q)
m

)2

is the magnitude

and

• θm is the argument or phase

of the complex number A
(I)
m + jA

(Q)
m .

6.48. From (46), it is apparent that the QAM signal waveforms may be
viewed as combined amplitude (rm) and phase (θm) modulation. In fact,
we may select any combination of M1-level PAM and M2-phase PSK to
construct an M = M1M2 combined PAM-PSK signal constellation.

• If M1 = 2b1 and M2 = 2b2, the combined PAM-PSK signal constellation
results in the simultaneous transmission of b1 + b2 = log2M1M2 binary
digits occurring at a symbol rate R/(b1 + b2).
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6.49. From (43), it can be seen that, similar to the PSK case, φ1(t) and
φ2(t) given in (41) and (42) can be used as an orthonormal basis for QAM
signals. The dimensionality of the signal space for QAM is N = 2. Using
this basis, we have

sm(t) = A(I)
m

√
Eg

2
φ1 (t) + A(Q)

m

√
Eg

2
φ2 (t)

which results in vector representations of the form

s(m) =

(
A(I)
m

√
Eg

2
, A(Q)

m

√
Eg

2

)T

.

Example 6.50. Examples of signal space diagrams for combined PAM-PSK
are shown in Figure 31, for M = 8 and M = 16.Chapter Three: Digital Modulation Schemes 
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FIGURE 3.2-4 
Examples of combined PAM-PSK constellations. 

In the special case where the signal amplitudes take the set of discrete values 
{(2m- 1-M), m = 1, 2, ... , M}, the signal space diagram is rectangular, as shown 
in Figure 3.2-5. In this case, the Euclidean distance between adjacent points, i.e., the 
minimum distance, is 

(3.2-41) 

which is the same result as for PAM. In the special case of a rectangular constellation 
with M = 22k1 , i.e., M = 4, 16, 64,256, ... , and with amplitudes of ±1, ±3, ... , 
±(v'JiJ- 1) on both directions, from Equation 3.2-39 we have 
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Figure 31: Examples of combined PAM-PSK constellations.

Example 6.51. In the special case where the signal amplitudes are taken
from the set of discrete values A = {(2m− 1−M),m = 1, 2, . . . ,M}, the
signal space diagram is rectangular, as shown in Figure 32.

6.52. PAM and PSK can be considered as special cases of QAM. In QAM
signaling, both amplitude and phase carry information, whereas in PAM
and PSK only amplitude or phase carries the information.
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FIGURE 3.2-4 
Examples of combined PAM-PSK constellations. 

In the special case where the signal amplitudes take the set of discrete values 
{(2m- 1-M), m = 1, 2, ... , M}, the signal space diagram is rectangular, as shown 
in Figure 3.2-5. In this case, the Euclidean distance between adjacent points, i.e., the 
minimum distance, is 

(3.2-41) 

which is the same result as for PAM. In the special case of a rectangular constellation 
with M = 22k1 , i.e., M = 4, 16, 64,256, ... , and with amplitudes of ±1, ±3, ... , 
±(v'JiJ- 1) on both directions, from Equation 3.2-39 we have 

1 £ .,fM .,fM 

Cavg = M ; LL (A~ +A~) 
m=l n=l 

cg 2M(M- 1) 
= - X ---'----..:... 

2M 3 
(3.2-42) 

M-1 
=-3-cg 

M=64 FIGURE 3.2-5 
·---~---·---~-1 
I 
I • 

-~---·---~---, 

M=32 
I 
I 
I 

Several signal space diagrams for rectangular 
QAM. 

I 
I 
I 

; 
I 
I 
I 

• I 

• jJ"---~- -·----- • 
~/ ', 

/ ' 
.. / M= 16 ',, . .----~- -·---... 
I I I 
I I I 
I I M=81 
+ t----..-- -·--- .... 1 I 1M=4: 

I 
I 
I 

• I 

• I 
I 
I 

+ 
I 
I 
I 

t 
I 

I I I I I I I I • • ·---+-- _, ___ _. ; • 
: : : : : : 
1 I I I I I 

; *,, ·---·-- -·----- ,• + I // I 

: ~ / : . . -----·- -~---· . . I I 
I I 
I I 

·---~---·---~- -·----·---~---· 

105 

Figure 32: Several signal space diagrams for rectangular QAM.

6.4.4 Orthogonal Signaling

Definition 6.53. In orthogonal signaling, the waveforms sm(t) are or-
thogonal and of equal energy Es. In which case, the orthonormal set
{φm(t), 1 ≤ m ≤ N} defined by

φm(t) =
sm(t)√
Es

, 1 ≤ m ≤M

can be used as an orthonormal basis for representation of {sm(t), 1 ≤ m ≤M}.
The resulting vector representation of the signals will be

s(1) =
(√

Es, 0, 0, . . . , 0
)
,

s(2) =
(

0,
√
Es, 0, . . . , 0

)
,

... =
...

s(M) =
(

0, 0, 0, . . . ,
√
Es

)
.

Definition 6.54. In Frequency-Shift Keying (FSK), messages are trans-
mitted by waveforms that differ in frequency:

sm(t) = A cos (2πfmt) , 0 ≤ t ≤ Ts, 1 ≤ m ≤M.

Note that when fm = m
Ts

, we have orthogonal signaling.
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